On the Adversarial Robustness of Benjamini Hochberg
Talk, International Symposium on Math Programming, 2024, Montreal, Canada
Talk, International Symposium on Math Programming, 2024, Montreal, Canada
Talk, Informs Analytics Conference, 2024, Orlando, FL
Talk, Informs Optimization Society Conference, 2024, Houston, Texas
Talk, Seminar at National Cheng Kung University, 2023, Taichung, Taiwan
Talk, International Conference on Stochastic Programming, UC Davis 2023, Davis, CA
Talk, INFORMS Annual Meeting, Indianapolis 2022, Indianapolis, IN
Talk, Seminar at Singapore Management University 2022, Singapore
Talk, International Conference on Continuous Optimization 2022, Lehigh University- Bethleham, PA
Talk, Informs Optimization Society Conference, Greenville, South Carolina
Talk, IFORS 2021, Online
Talk, NEURIPS 2020, Online
We propose and study a distributionally robust influence maximization problem. Unlike the classic Independent Cascade model proposed in Kempe, Kleinberg, and Tardos (2003), we consider a model that involves an adversarial response to the selection of seed set. More precisely, rather than the spread of influence being determined by the independent coupling of random arcs, the spread of influence will be determined by an adversarial coupling of random arcs in response to any selection of seed set. Similarly to traditional stochastic models, the optimization problem remains NP-Hard. However, in contrast, with this newly introduced robust model, both the influence function and any node’s likelihood of being influenced can now be efficiently computed; furthermore, we show that even with an adversarial coupling, the greedy algorithm still guarantees a (1 - 1/e) - approximation of the optimum, as in the Independent Cascade model. Finally, we consider computational comparisons through experiments.
Talk, Manufacturing and Service Operations Management Conference (2019), Singapore
This work is inspired by the daily operations of Hema supermarket, which is a recently established “new retail” model by Alibaba Group, China. In a Hema supermarket store, a single SKU may be presented with demand in the form of multiple channels. The challenge facing Hema is the question of how many units to stock in total between the warehouse and the store-front in advance of uncertain demand that arises in several consecutive time frames, each 30 minutes long. In this work, we provide the first distributionally robust optimization study in the setting of omnichannel inventory management, wherein we are to make a stocking decision robust to an adversary’s choice of coupling of available (marginal) demand distributions by channel and by time frame. The adversary’s coupling decision amounts to designing a random mathematical program with equilibrium constraints (MPEC). And we provide both a structural analysis of the adversary’s choice of couplingas well as an efficient procedure to find this coupling. In general, the overall distributionally robust stocking problem is non-concave. We provide sufficient conditions on the cost parameters under which this problem becomes concave, and hence tractable. Finally, we conduct experiments with Hema’s data. In these experiments, we compare and contrast the performance of our distributionally robust solution with the performance of a naive Newsvendor-like solution on various SKUs of varying sales volume and number of channels on a 5-hour time window from 2pm - 7pm on weekends. Numerical experiments show that the distributionally robust solutions generally outperform the stochastic Newsvendor-like solution. Furthermore, and interestingly, in all of our experiments, the distributionally robust inventory decision problems presented by the historical data provided by Hema are in fact concave.
Talk, INFORMS Annual Meeting (2018), Phoenix, Arizona
In this talk, we consider the problem of distributionally robust network design. In this problem, the decision maker is to decide on the prepositioning of resources on arcs in a given s-t flow network in anticipation of an adversary’s selection of a probability distribution for the arc capacities, aimed to minimize the expected max flow. The adversary’s selection is limited to those distributions that are couplings of given arc capacity distributions, one for each arc. We show that we can efficiently solve the distributionally robust network design problem in the case of finite-supported marginals. Further, we take advantage of the network setting to efficiently solve for the distribution the adversary responds with. The primal-dual formulation of our previous work takes on a striking form in this study. As one might expect, the form relates to the well-known Max Flow, Min-Cut theorem. And this leads to the intriguing interpretation as a 2-player, zero-sum game wherein player 1 chooses what to set the arc capacities to and player 2 chooses an s-t cut. Essential to our analysis is the finding that the problem of finding the worst-case coupling of the stochastic arc capacities amounts to finding a distribution over the set of s-t cuts- this distribution being among the mixed strategies that player 2 would play in a Nash equilibrium. Furthermore, the support of such a distribution is a nested collection of s-t cuts, which implies an efficiently sized solution.
Talk, 23rd International Symposium on Mathematical Programming, Bordeaux, France
We study the class of linear and discrete optimization problems in which the objective coefficients are chosen randomly from a distribution, and the goal is to evaluate robust bounds on the expected optimal value as well as the marginal distribution of the optimal solution. The set of joint distributions is assumed to be specified up to only the marginal distributions. We provide a primal-dual formulation for this problem. Though the robust bound is NP-hard, we identify a sufficient condition for polynomial time solvability using extended formulations. This generalizes the known tractability results under marginal information from 0-1 polytopes to a class of integral polytopes and has implications on the solvability of distributionally robust optimization problems in areas such as scheduling which we discuss. We present the Distributionally Robust Max-Flow problem to illustrate our theoretical results.
Talk, Informs Annual Meeting (2017), Houston, Texas
Talk, National University of Singapore, Singapore
Talk, Informs Annual Meeting (2016), Nashville, Tennessee
Cardinality-Constrained assortment optimization, the problem of offering an assortment of items of constrained size that will maximize expected revenue, is generally regarded as a challenging problem. We provide a new perspective to the structural analysis, one that illuminates the optimality of “greedy solutions.” The approach reinterprets some known results for standard choice models but also provides some new ones as well.