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Abstract

In this paper, we extend the study of Chen et al. (2018) to the problem of distributionally

robust network design. In this problem, the decision maker is to decide on the prepositioning

of resources on arcs in a given s-t flow network in anticipation of an adversary’s selection of a

probability distribution for the arc capacities that seeks to minimize the expected max flow. The

adversary’s selection is limited to those distributions that are couplings of given arc capacity

distributions, one for each arc. We find that modeling the uncertainty in this way is certainly

more sensible than prescribing the stochastic behavior of the arc capacities across an entire

network. Furthermore, while it is in fact #P-Hard to compute even the expectation with respect

to the independent coupling of the stochastic arc capacities, we show that we can efficiently solve

the distributionally robust network design problem. Indeed, this particular problem satisfies the

sufficiency condition for tractability that we proposed in the previous work. But what’s more,

a highlight and extension in this work is to take advantage of the network setting to go even

further and efficiently solve for the distribution the adversary responds with.

1 Max Flow with Random Arc Capacities

In the max flow problem (cf. Ahuja, Magnanti and Orlin (1993)), we are given a graph G = (N,A).

N is the node set consisting of at least two distinct elements—the source s and the sink t. A is

the arc set consisting of ordered pairs of the form (i, j), which indicates that flow can be directed

from i to j, for distinct nodes i, j ∈ N . For each arc (i, j) ∈ A, we let ũij ≥ 0 denote the random

capacity of that arc (an upper bound on the flow that can be directed from node i to node j); we

∗Operations Research Center, Massachusetts Institute of Technology, llchen@mit.edu.
†Operations Research Center, Massachusetts Institute of Technology, willma@mit.edu.
‡Sloan School of Management, Massachusetts Institute of Technology, jorlin@mit.edu.
§Institute for Data, Systems, and Society, Department of Civil and Environmental Engineering, and Operations

Research Center, Massachusetts Institute of Technology, dslevi@mit.edu.

1



use ũ to refer to the set {ũij ∶ (i, j) ∈ A}. We are given the marginal distribution µij of ũij for each

arc (i, j), and would like to evaluate the expected value of the maximum flow that can be directed

from s to t under the worst-case correlation between {µij ∶ (i, j) ∈ A}.

For a realization of the arc capacities ũ, the value of the max flow Z(ũ) is given by the optimal

objective value of the following LP.

max v (MaxFlow-1)

s.t. ∑
j∶(i,j)∈A

xij − ∑
j∶(j,i)∈A

xji =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v, i = s

0, i ∈ N ∖ {s, t}

−v, i = t

∀i ∈ N

0 ≤ xij ≤ ũij , (i, j) ∈ A

We are interested in studying the value of the worst-case expected max-flow,

inf
θ∈Γ({µij ∶(i,j)∈A})

Eũ∼θ[Z(ũ)]. (*)

Towards this goal, observe that Z(ũ) can be written as a discrete minimization problem (the min

cut problem) over the set C of incidence vectors to (s-t) cut-sets in the graph. Further, conv(C) is

a 0-1, integral polyhedron.

The first main result is a linear program formulation.

Theorem 1.1. The expected value of the max flow under the worst-case correlation, defined as

infθ∈Γ({µij ∶(i,j)∈A})Eũ∼θ[Z(ũ)], is equal to the optimal objective value of the following problem.

max
x,v,w

⎛

⎝
v − ∑

(i,j)∈A
∫
ũij

max{wij − ũij ,0}dµij
⎞

⎠
(MaxFlow-2)

s.t. ∑
j∶(i,j)∈A

xij − ∑
j∶(j,i)∈A

xji =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v, i = s

0, i ∈ N ∖ {s, t}

−v, i = t

∀i ∈ N

0 ≤ xij ≤ wij , (i, j) ∈ A

Problem (MaxFlow-2) resembles the original LP (MaxFlow-1), except now the arc capacities,

instead of being fixed realizations ũij , are decision variables wij . For each arc (i, j) there is a

2



“penalty” term ∫ũij max{wij − ũij ,0}dµij in the objective function, dependent on the marginal

distribution µij , which dissuades wij from being as large as possible.

In general, the worst-case joint distribution θ between the random arc capacities will be high-

dimensional and intractable to compute. Nonetheless, Corollary 1.1 shows that we can still evaluate

the worst-case expected value of the max flow. Indeed, (MaxFlow-2) is tractable since the penalty

terms are convex—in fact, if each µij is given as a discrete distribution, then (MaxFlow-2) can be

reformulated as a polynomial-sized LP.

2 Recovering the Worst-Case Coupling of Marginals with Finite

Support

In Theorem 1.1, we showed that the optimization problem (*) can essentially be written in the form

of a max-cost flow problem. When solved, we find the worst-case expected value under the worst-

case coupling of the random arc capacities, without actually even having the worst-case coupling

on-hand. In this subsection, we demonstrate that when the random arc capacities are discrete

random variables with finite support, we can in fact find the worst-case coupling.

2.1 A Lagrangian

Let supp(ũij) ∶= {u1
ij , . . . , u

mij
ij } (values written in increasing order), with respective probabilities

{p1
ij , . . . , p

mij
ij }, and let Xcut denote the set consisting of any vector χ that is the 0-1 characteristic

vector to some (s-t) cut-set in the digraph G. For w ∈ RA and ν ∈ P(Xcut), let us define the following

Lagrangian function

L(ν,w) ∶=
⎛

⎝
∑
(i,j)∈A

wij ⋅Πijν(1) − ∑
(i,j)∈A

mij

∑
k=1

max{wij − u
k
ij ,0} ⋅ p

k
ij

⎞

⎠
.

We can establish that problem (*) is equivalent to the max-min/min-max pair of problems that

form a primal-dual pair.

max
w

min
ν∈P(Xcut)

L(ν,w) = (Problem MaxFlow-2) (Lagrangian Primal)
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and

min
ν∈P(Xcut)

{q(ν) ∶= max
w

L(ν,w) = ∑
(i,j)∈A

kij−1

∑
k=1

ukij ⋅ p
k
ij + u

kij
ij

⎛

⎝
Πijν(1) −

kij−1

∑
τ=1

pτij
⎞

⎠
}, (Lagrangian Dual)

where kij ∶= max{k ∈ [mij] ∶ Πijν(1) −∑
k−1
τ=1 p

τ
ij ≥ 0}.

Remark 2.1. At this juncture, we note that the objective function q in Lagrangian Dual is an

expectation with respect to a very particular coupling. We describe the coupling at an intutiive

level as follows: If χ ∈ Xcut, let χij denote whether or not arc (i,j) is in the cut that χ represents.

Now let χ̃ ∼ ν∗ ∈ P(Xcut), and let Πijν
∗(1) denote the probability that χ̃ij = 1. And we’ll let

Πijν
∗(0) denote the probability that χ̃ij = 0. For each arc (i,j) define the conditional distribution

ũij ∣χ̃ij=1 as the χ̃ij distribution conditioned on the “bottom Πijν
∗(1) -values”. For each arc (i,j)

define the conditional distribution ũij ∣χ̃ij=0 as the ũij distribution conditioned on the “top Πijν
∗(0)

-values”. Then, the worst-case joint distribution ũ can be described as follows: Draw a cut χ̃

according to ν∗, and denote the realization by χ; then, for each (i,j), draw a ũij according to

ũij ∣χ̃ij=χij . Hence, q(ν) can alternatively be written as an expectation wrt this coupling as:

q(ν) = Eχ̃∼ν

⎡
⎢
⎢
⎢
⎢
⎣

E

⎡
⎢
⎢
⎢
⎢
⎣

∑
(i,j)∈A

ũij ⋅ χ̃ij ∣∣χ̃

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

As we are given that infθ∈Γ({µij ∶(i,j)∈A})Eũ∼θ[minχ∈Xcut∑(i,j)∈A ũij ⋅ χij] equals minν∈P(Xcut) q(ν), it

then suffices to solve for a distribution over cut-sets in order to find the worst-case coupling. △

2.2 An Alternative Network Formulation Dual

Via the Lagrangian object introduced in the last section, we were able to establish a dual problem to

Lagrangian Primal, equivalently, problem (*). In this section, we show that the network structure

affords us yet another problem that is dual to Lagrangian Primal, whose connections to Lagrangian

Dual prove instrumental in our analysis. To obtain this dual problem that we term LP Dual, observe

first that Lagrangian Primal can be simplified to:
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max
w,wts

wts − ∑
(i,j)∈A

mij

∑
k=1

max{wij − u
k
ij ,0} ⋅ p

k
ij

subject to w,wts satisfy flow balance at all nodes

w ≥ 0

(Add arc (t,s) with cost +1, and upper capacity = +∞)

At this point, we have an Uncapacitated max-cost flow problem w/ piecewise linear concave arc

profits. From here, we can perform the standard transformation to a capacitated max-cost flow

problem with linear arc costs by replacing each arc (i, j) ∈ A with mij parallel arcs. More precisely,

for any (i, j) ∈ A, in place of arc (i,j) we now have mij parallel arcs directed from i to j, where for

any k ∈ {1, . . . ,mij}, the k-th parallel arc has profit equal to −∑
k−1
τ=1 p

τ
ij and upper capacity equal

to ukij − u
k−1
ij . Note: u0

ij ∶= 0 for any (i, j) ∈ A. And we leave the arc (t,s) as is. In addition, for

the sake of analysis, we will also add the following arcs wherein it will never be profitable to have

nonzero flow:

• For any node i ∉ {s, t}, add an arc from i pointed to t, with cost = -1, capacity = +∞

• For any node i ∉ {s, t}, add an arc from t pointed to i, with cost = 0, capacity = +∞

With this equivalent capacitated max-cost flow problem just designed, the interest turns towards

its linear programming dual:

min
π,λ

∑
(i,j)∈A

mij

∑
k=1

(ukij − u
k−1
ij ) ⋅ λkij

subject to 1 + πt − πs = 0

−
k−1

∑
τ=1

pτij + πi − πj ≤ λ
k
ij (i, j) ∈ A,k = 1, . . . ,mij

πt − πi ≥ −1; ∀i ∈ N ∖ {s, t}

πi − πt ≥ 0; ∀i ∈ N ∖ {s, t}

λkij ≥ 0; (i, j) ∈ A,k = 1, . . . ,mij

πi free i ∈ N

(Label: LP Dual)

Let us call the feasible region LPDualfeas, and note the following. If we further constrain
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πt = 0, the optimal value is not changed. Indeed, we can do this because for any fixed λ,

Projπ(LPDualfeas) ∶= {π ∶ (π,λ) ∈ LPDualfeas} is translation-invariant in the “all-ones” di-

rection. What’s more, for any π ∈ Projπ(LPDualfeas) that satisfies πt = 0, necessarily πs = 1 and

πi ∈ [0,1] for all i ∈ N . So let us define

Πfeasible ∶= {π ∈ RN ∶ πs = 1, πt = 0, πi ∈ [0,1]∀i ∈ N},

and observe that for any π ∈ Πfeasible,

min
λ∈Projλ(LPDualfeas)

∑
(i,j)∈A

mij

∑
k=1

(ukij − u
k−1
ij ) ⋅ λkij = ∑

(i,j)∈A

mij

∑
k=1

(ukij − u
k−1
ij ) ⋅max(πi − πj −

k−1

∑
τ=1

pτij ,0).

This expression, as a function of π, resembles Lagrangian Dual Objective and motivates the defi-

nition of an LP Dual Objective q′, i.e, LP Dual becomes

min
π∈Πfeasible

{q′(π) ∶= ∑
(i,j)∈A

mij

∑
k=1

(ukij − u
k−1
ij ) ⋅max(πi − πj −

k−1

∑
τ=1

pτij ,0)} (LP Dual)

Written another way, q′ takes the form

q′(π) = ∑
(i,j)∈A

⎛
⎜
⎝

k′ij−1

∑
k=1

ukij ⋅ p
k
ij + u

k′ij
ij

⎛
⎜
⎝
πi − πj −

k′ij−1

∑
τ=1

pτij

⎞
⎟
⎠

⎞
⎟
⎠
1πi−πj>0 (LP Dual Objective)

where k′ij ∶= max{k ∈ [mij] ∶ πi − πj −∑
k−1
τ=1 p

τ
ij ≥ 0}.

2.3 Connecting Lagrangian Dual and LP Dual: Recovering the Worst-Case

Coupling

The optimization problems LP Dual and Lagrangian Dual are equivalent in the sense that minπ∈Πfeasible q
′(π) =

minν∈P(Xcut) q(ν). LP Dual is a linear program and hence more tractable than the optimization

problem over P(Xcut) in Lagrangian Dual. But, since it is of interest to find an optimal solution

to Lagrangian Dual so that we may construct the worst-case correlation of arc capacities, merely

solving LP Dual does not help. The following key observation reveals how indeed an optimal solu-

tion to LP Dual yields an optimal solution to Lagrangian Dual, and hence, the desired worst-case

coupling of arc capacities.

Comparing the expressions q(ν) and q′(π), we note that for ν ∈ P(Xcut) and π ∈ Πfeasible,

Πijν(1) = (πi − πj) ⋅ 1(πi−πj)>0
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is a sufficient condition to obtain q(ν) = q′(π). The fact that for π ∈ Πfeasible, πi − πj ≤ 1 for all

(i, j) ∈ A is encouraging and suggests there may exist a mapping π ↦ νπ that takes π ∈ Πfeasible

into some probability distribution νπ over the set of cut-sets. With the goal of ensuring that π and

νπ satisfy the sufficient condition, let us consider the following mapping. Given π ∈ Πfeasible, order

the range of π as 0 = π(0) < π(1) < . . . < π(K) = 1, where K denotes the number of different values in

the range of π. Then, for each k ∈ {0,1, . . . ,K − 1}, let Tk ∶= {i ∈ N ∶ πi ≤ π
(k)}, and Sk ∶= N ∖ Tk.

Consequently, each Tk contains node t and Sk contains node s, so that Ck ∶= (Sk, Tk) is an (s-t)

cut with corresponding cut-set Ak ∶= {(i, j) ∈ A ∶ i ∈ Sk, j ∈ Tk}. Furthermore, T0 ⊂ T1 ⊂ . . . ⊂ TK−1,

while S0 ⊃ S1 ⊃ . . . ⊃ SK−1; in other words, the collection of (s-t) cuts Ck is “nested”. Let us define

a probability distribution over this collection of (s-t) cuts via

Ck w.p. π(k+1)
− π(k), ∀k = 0, . . . ,K − 1.

This distribution on (s-t) cuts induces a distribution νπ over the set of cut-sets Xcut; namely, if

Cπ = (Sπ, T π) is a random (s-t) cut, distributed according to the above over {Ck}
K−1
k=1 , then we

correspondingly have a random cut-set Aπ whose distribution over {Ak}
K−1
k=1 we will call νπ.

Finally, given any arc (i, j) ∈ A,

• If πi − πj > 0, then

j ∈ T π, i ∈ Sπ ⇐⇒ [T π = Tk(j)] ∨ [T π = Tk(j)+1] ∨ . . . ∨ [T π = Tk(i)−1],

where k(j) is defined by πj = π
(k(j)). Noting this, then the event [(i, j) ∈ A] happens with

probability Πijνπ(1) = ∑
k(i)−1
τ=k(j) π

(τ+1) − π(τ) = π(k(i)) − π(k(j)) = πi − πj .

• If πi−πj < 0, then (i, j) ∉ Ak for all k ∈ {0,1, . . . ,K −1}. Hence, the event [(i, j) ∈ A] happens

with probability Πijνπ(1) = 0.

Thus, we have confirmed that this mapping π z→ νπ satisfies the sufficient condition, so that

q′(π) = q(νπ) ∀π ∈ Πfeasible.

Thus, it suffices to solve LP Dual for an optimal solution π∗ and perform the mapping above

to obtain a probability distribution νπ∗ over (s-t) cut-sets that yields the worst-case coupling of

arc capacities. Interestingly, along the way, the structure of our mapping revealed that it suffices
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to restrict the set of distributions over (s-t) cut-sets to the subset of distributions whose support

satisfies the “nested” property described above.
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